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Abstract

A new theoretical model for nuclear spin relaxation in paramagnetic systems in solution has been developed. Fast rotational

motion is included in the model, both as a source of modulation of the static zero-field splitting, which provides a mechanism for

electron spin relaxation, and as an origin of the stochastic variation of the electron spin–nuclear spin dipole–dipole interaction

leading to nuclear spin relaxation. At the limit of low magnetic field, the model is essentially identical to the earlier formulations

from our laboratory, but new closed-form expressions are given for the inner- and outer-sphere relaxation at the high-field limit.

Numerical comparisons with a general theory are reported for the inner-sphere case. In addition, some nuclear magnetic relaxation

dispersion (NMRD) profiles from the literature are considered for systems where experiments have been done with both low-

molecular weight paramagnetic complexes and their adducts with proteins. Previously developed theories are used to interpret data

for the slowly rotating protein adducts, and good fits of the fast-rotating counterparts are obtained by further adjustment of one or

two additional parameters.

� 2003 Elsevier Science (USA). All rights reserved.
1. Introduction

NMR resonance frequencies and relaxation proper-

ties of nuclear spins residing in paramagnetic transition

metal complexes in solution are strongly influenced by

the presence of unpaired electron spin [1]. In particular,

the nuclear spin relaxation rates in paramagnetic solu-

tions are very much higher than in the diamagnetic

counterparts. In the context of nuclear spin–lattice re-

laxation, one commonly speaks about the paramagnetic
relaxation enhancement, PRE. Strong PRE effects can

also be seen for nuclear spins belonging to the solvent or

to ligands that spend only a small portion of the time in

the coordination sphere of the paramagnetic metal ion.

The PRE effect, especially when studied as a function of

the magnetic field (the nuclear magnetic relaxation dis-

persion, NMRD, experiment) can be an important

source of information on structural as well as dynamic
properties of a system, provided that an adequate the-

oretical model is available. The NMRD profiles are an
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important and commonly used tool in the characteri-

sation of paramagnetic complexes, such as Gd(III)
chelates, considered for possible applications as contrast

agents for magnetic resonance imaging, MRI [2,3].

The theory of PRE has developed along two lines.

First, the ‘‘classical’’ theory of the PRE for a nuclear

spin in a paramagnetic molecule, T�1
1I , is known as the

Solomon–Bloembergen–Morgan (SBM) approach [1,4–

7]. The SBM theory was developed in the high-field limit

and for highly symmetric complexes. It assumes that the
PRE arises through simple stochastic modulation of the

hyperfine interaction between the nuclear and electron

spins by molecular tumbling, electron spin relaxation

and, possibly, chemical exchange. The hyperfine inter-

action consists of a dipolar part and a scalar term (the

latter is not modulated by rotation). The dipolar part,

usually considered dominant for proton relaxation, is

assumed to have a constant strength corresponding to a
certain nuclear spin–electron spin distance. The electron

spin relaxation is assumed to originate from the colli-

sional modulation of the zero-field splitting (ZFS) [7],

with zero average, and is described by a second-order

perturbation Redfield-type theory [8]. Luz andMeiboom
reserved.
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[9] formulated a simple expression for the measured
enhancement of the nuclear spin–lattice relaxation rate,

T�1
1P , in a situation when the nuclear spin exchanges,

with lifetime sM, between an in-complex site with the
spin-lattice relaxation rate T�1

1I and the bulk

T�1
1P ¼ PMq

T1I þ sM
; ð1Þ

where PM is the molar ratio of the concentrations of

paramagnetic species to the ligand (or solvent) protons

and q is the number of ligands in the bound position.

This contribution to the PRE is called inner-sphere re-
laxation. The ligand or solvent molecules can also ex-

perience PRE without ever entering the inner

coordination sphere of the paramagnetic species. This

second mechanism, referred to as outer-sphere (OS) re-

laxation, is usually less important and more difficult to

describe, as it allows for stochastic variation of the nu-

clear spin–electron spin distance. The outer-sphere

contribution to the PRE, T�1
1;OS, can be added to Eq. (1)

as a second term. An important theoretical model for

the outer-sphere relaxation was given by Hwang and

Freed [10] and was modified by Freed [11]. Both the

SBM approach and the Hwang–Freed formulation are

based on a very simple description of the electron spin

relaxation. An improved description of electron relaxa-

tion, but still valid only in the high-field limit and in the

perturbation regime (the Redfield limit), was proposed
by Rubinstein et al. [12].

For systems with an electron spin quantum number

S P 1, the high-field limit assumption may often be vio-

lated by the presence of a strong ZFS interaction. De-

pending on the strength of the ZFS and the motional

conditions, the ZFS can act as the principal origin of the

electron spin energy level structure, as the source of

electron spin relaxation or as both. A large ZFS in
combination with slow motions can, in addition, bring

the electron spin relaxation outside the Redfield limit.

The complicated nature of electron spin relaxation and

its effects on nuclear spin relaxation can be described,

under rather general conditions, using a theory formu-

lated by Benetis et al. [13–16] and extended by Kowa-

lewski and co-workers [17–19]. This theory is commonly

called the general slow-motion theory. Briefly, the nu-
clear spin couples via the hyperfine interaction with a

generalised lattice described by a Liouville superoperator

containing quantum mechanical interactions (Zeeman

interaction, ZFS) as well as classical degrees of freedom

(reorientation, distortion). The nuclear spin relaxation is

within the Redfield limit, but the electron spin relaxation

does not need to be. The inner-sphere PRE is computed

by setting up and inverting a very large matrix. This
approach has been demonstrated to be useful as a pre-

dictive tool [18,19] and as a way to perform least-squares

fits to experimental NMRD data [17,20]. The computa-

tional effort required is however very large.
Besides this general approach, or as an alternative to
it, several simpler models for the inner-sphere PRE have

been proposed. The static ZFS was allowed to influence

the electron spin energy levels by Sharp and co-workers

[21,22] and by Bertini et al. [1,23]. Westlund [24] devel-

oped a low-field theory for electron spin relaxation and

the PRE for S ¼ 1, generalised subsequently by Nilsson
and Kowalewski [25] to higher S quantum numbers.

Bertini et al. [26] and Kruk et al. [27] formulated a
similar theoretical model, valid for arbitrary relation

between the electron Zeeman interaction and the static

ZFS. All these approaches [21–27] assume that the

electron spin relaxation and reorientational motion are

uncorrelated (the decomposition approximation); in

the more recent work [26,27] it is explicitly required that

the reorientation has to be so slow that it only con-

tributes through powder-averaging of the orientation-
specific nuclear spin relaxation in the paramagnetic

complexes.

Among other related developments, one should also

mention the improvements of high-field electron spin

relaxation theory by Rast et al. [28], which has also been

incorporated in an SBM-like approach to the PRE by

Borel et al. [29], and recent work by Sharp and Lohr

[30,31], offering an alternative view of the role of elec-
tron spin relaxation processes in the PRE. Abernathy

and Sharp [32] also proposed the ‘‘spin dynamics’’

method, designed to deal with intermediate rate reori-

entation processes. The outer-sphere PRE has also re-

ceived some attention. Developments relevant to the

present work were proposed some time ago by Sharp

and co-workers [33,32] and, more recently, by Kruk

et al. [27,34,35].
In the present article, we turn our attention to the

case where the tumbling of the complex is fast. The

theory is presented in Section 2. The basic assumptions

are as follows:

• the unperturbed Hamiltonian is the Zeeman interac-

tion at high field and static (quadratic), axially sym-

metric ZFS at low field;

• the electron relaxation is in the perturbation (Red-
field) regime;

• the dipole–dipole and the static ZFS principal axis sys-

tems coincide (this assumption can easily be omitted);

• for the outer-sphere case, the translational diffusion is

assumed uncorrelated with reorientation and with

electron spin relaxation.

We deal with the inner- and outer-sphere case sepa-

rately. The fast-rotating systems can be treated relatively
easily at high field, at least under certain conditions. The

low-field case is more difficult, and we can only handle

the limiting case of zero magnetic field discussed by and

large in our earlier work [25,27]. In Section 3, we present

some illustrative simulated NMRD profiles and use the

present methods to interpret some experimental NMRD

datasets.
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2. Theory

2.1. General framework

In general, one assumes the nuclear spin system to be

weakly coupled to the lattice, which permits us to use

the Redfield theory to describe nuclear relaxation pro-

cesses. Under this assumption, the nuclear spin–lattice

relaxation rate of ligand nuclei bound to the paramag-
netic site is given as the real part of the complex spectral

density, taken at the nuclear spin Larmor frequency [13–

19,25,27,34]:

T�1
1I ¼ 2Re KDD1;1 ð

�
� xIÞ

�
: ð2Þ

The dipole–dipole interaction between the nuclear spins

of the first coordination shell and the unpaired electron

spin is modulated by the rotational motion of the

complex and by the electron spin dynamics. The spectral

density KDD1;1 ð�xIÞ in this case is given by [25,27]
KDD1;1 tð�xIÞ ¼ 30ðCDDÞ2

X
q2ð�1;0;1Þ

�
X

p2ð�1;0;1Þ

2 1 1

1� q q �1

� �
2 1 1

1� p p �1

� �

�
Z 1

0

TrL S1ðLÞ
þ

q D2
	

0;1�q½XMLðtÞ�
n

� exp
�
� i^̂LL̂LLLt

�
S1ðLÞp D20;1�p XMLð0Þ½ �qeqL

o
� expð�ixI tÞ dt: ð3Þ

The dipole–dipole constant CDD is given by: CDD ¼
l0�hcIcS=4pr

3
IS , where rIS is the distance between the

interacting spins I and S. The q-component of the first-

order irreducible spherical tensor operator for the elec-

tron spin, S1ðLÞq , is written in the laboratory frame (L),
while the Wigner rotation matrix D20;1�qðXMLÞ describes
the transformation from the molecule-fixed dipole–di-

pole frame (M) to the (L) frame through the set of Euler

angles XML. Invoking the decomposition approximation

[16,25,27], the lattice density operator qeqL is the direct

product of the reorientational density operator, qeqR , and
the electron spin density operator qeqS ðq

eq
L ¼ qeqR � qeqS Þ

and it is assumed to be in thermal equilibrium. The
decomposition approximation has been shown to be

valid for slowly rotating systems [18,19,25,27]. In this

study, we investigate the applicability and limitations of

the decomposition approximation in systems that rotate

fast. The correlation function in Eq. (3) contains the

lattice Liouville superoperator,
^̂LL̂LLL, that determines the

time evolution of the system. The lattice Liouville su-

peroperator is given as a sum of a Markov operators,
^̂LL̂LLR

and ^̂LL̂LLD, describing classically the rotational diffusion
and the distortion of the complex, respectively, and the

electron spin Liouvillian ^̂LL̂LLS
^̂LL̂LLL ¼ ^̂LL̂LLR þ ^̂LL̂LLD þ ^̂LL̂LLS: ð4Þ
The electron spin Liouvillian,
^̂LL̂LLS, is in turn defined as the

sum of the Liouvillian, ^̂LL̂LLZeeman, generated by the electron
spin Zeeman Hamiltonian, HZeeman, and the Liouvillians,
^̂LL̂LL
S

ZFS and
^̂LL̂LL
T

ZFS, corresponding to the static and transient

parts (HS
ZFS and HT

ZFSÞ of the ZFS, respectively

^̂LL̂LLSðtÞ ¼ ^̂LL̂LLZeemanðtÞ þ ^̂LL̂LL
S

ZFS tð Þ þ ^̂LL̂LL
T

ZFSðtÞ: ð5Þ

The static part of the ZFS can be thought of as an av-

erage over rapid oscillations, caused by complex vibra-
tions and collisions with the surrounding solvent. The

transient ZFS corresponds to instantaneous deviations

from the average. The stochastic modulation of the two

terms is connected with random rotations and distor-

tions. If the Zeeman coupling is much larger than the

ZFS interaction (HZeeman  HS
ZFS, the high-field limit),

the electron spin precesses around the external labora-

tory magnetic field. In this case, the Zeeman interaction
is considered as a time-independent Hamiltonian de-

scribing the energy level structure. Stochastic time de-

pendencies of the ZFS interactions (HS
ZFSðtÞ and HT

ZFSðtÞÞ
provide a physical mechanism of electron spin relaxa-

tion, recently described by Rast et al. [28]. At low

magnetic field, the electron spin precession occurs

around the principal axis system of the static ZFS tensor

(PS) and the energy-level structure is determined by the
static ZFS interaction. In this regime, the transient

component of the ZFS interactions, HT
ZFSðtÞ, is respon-

sible for electron spin relaxation processes. With the

static ZFS as the main Hamiltonian, one might consider

the Zeeman coupling, HZeemanðtÞ, as a perturbation

contributing to the electron spin relaxation. However,

the Redfield description requires the relaxation Hamil-

tonian to be characterised by a zero average, a condition
not fulfilled by Zeeman interaction. In slowly rotating

systems, this can be handled in a formally correct way

by always including the Zeeman interaction in the un-

perturbed Hamiltonian [26,27]. In rapidly rotating sys-

tems, this procedure cannot be applied and we will

therefore work at the ‘‘strict’’ low-field limit, where the

effect of the Zeeman interaction can be neglected alto-

gether.
The PRE of nuclei residing in solvent molecules out-

side of the first coordination shell is caused by modula-

tion of the intermolecular dipolar interaction by

translational diffusion. This contribution to nuclear spin

relaxation is denoted outer-sphere (in a recent contri-

bution from our laboratory [35] we coined the concept

‘‘diffuse second sphere’’ (DSS), to be used when the in-

teraction between the paramagnetic species and the sol-
vent is described by a radial distribution function, rdf.

Here, we use the notation ‘‘outer-sphere’’ both for the

DSS situation and for the so-called force-free case, where

the rdf is uniform from the distance of closest approach

and outward). In the same manner as for the bound

ligand nuclei, the outer-sphere nuclear spin–lattice
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relaxation rate is given by the real part of the corre-
sponding spectral density [34]

T�1
1;OS ¼ 2Re KOS1;1 ð

�
� xIÞ

�
: ð6Þ

The spectral density KOS1;1 ð�xIÞ for the outer-sphere PRE
is the Fourier-Laplace transform of the time correlation

function, which describes three types of motion: trans-

lational diffusion, electron spin dynamics, and reorien-

tation [27,34]

KOS1;1 ð�xIÞ ¼ 30 COS
	 
2 X

q2ð�1;0;1Þ

X
p2ð�1;0;1Þ

�
2 1 1

1� q q �1

� �
2 1 1

1� p p �1

� �

�
Z 1

0

TrL S1ðLÞ
þ

q

D2
	
0;1�q½XISðtÞ�
r3ISðtÞ

(

� exp
�
� i^̂LL̂LLLt

�
S1ðLÞp

D20;1�p½XISð0Þ�
r3ISð0Þ

qeqL

)

� expð�ixI tÞ dt: ð7Þ

The outer-sphere constant is defined as COS ¼
l0�hcIcS=4p. The vector ~rrIS is defined as ~rrIS ¼~rrI �~rrS ,
where~rrI and~rrS describe the positions in the L frame of
the spins S and I, respectively, and XIS represents the

angles specifying the direction of ~rrIS . The additional
Liouville superoperator ^̂LL̂LLT describing the stochastic

translational motion is now included into the lattice

Liouvillian
^̂LL̂LLL:

^̂LL̂LLL ¼ ^̂LL̂LLR þ ^̂LL̂LLD þ ^̂LL̂LLT þ ^̂LL̂LLS; ð8Þ
where the electron spin Liouville operator ^̂LL̂LLS is defined
by Eq. (5). Generalising the decomposition approxima-

tion, the equilibrium lattice density operator is expressed

as a direct product of the corresponding equilibrium

density operators for the subsystems: qeqL ¼ qeqS � qeqR
� qeqT .
In order to proceed, we investigate separately three

cases of interest: (a) high-field limit, inner-sphere PRE,

(b) high-field limit, outer-sphere PRE, (c) low-field limit,

inner- and outer-sphere PRE. For each of these cases,

we concentrate on the effects of fast rotation and on the

validity of the decomposition approximation.

2.2. The high-field limit, inner-sphere relaxation

In the high-field region, the electron spin is quantised

in the laboratory (L) frame. The Zeeman interaction

acts as the unperturbed Hamiltonian determining the

electron spin energy level structure. The time-dependent
part of the electron spin Hamiltonian, which causes

transitions between the energy levels, is given by the sum

of the static and transient ZFS: HðtÞ ¼ HSðLÞ
ZFS ðtÞ þ

HTðLÞ
ZFS ðtÞ. The static ZFS tensor is defined in its own
principal axis system PS, which is fixed in the molecule.
The transformation of the second-rank irreducible
spherical electron spin tensor operators from the PS to
the L frame [25] gives the following representation of the

static ZFS Hamiltonian in the L frame:

HSðLÞ
ZFS ðtÞ ¼

X
n¼0;�1;�2

ð�1ÞnAðLÞ
n ðtÞS2�n; ð9Þ

where

AðLÞ
n ðtÞ ¼ 2

3

� �1=2
DS D20;n XPSLðtÞ

	 
"

þ ES D22;n XPSLðtÞ
	 
�

þ D2�2;n XPSLðtÞ
	 
�#

: ð10Þ

The Wigner rotation matrices in the above equation

describe the orientation of the static ZFS tensor with

respect to the external magnetic field. The time de-

pendence of the static ZFS defined in the L frame

originates from isotropic rotational diffusion of the

complex (the
^̂LL̂LLR term in the lattice Liouvillian of Eq.

(4)). The relaxation effects of the static ZFS can be
described by its magnitude D2S ¼ ð2=3ÞD2S þ 2E2S (the DS
and ES terms correspond to the axial and rhombic part
of the static ZFS tensor in its principal frame) and a

rotational correlation time sR for rank-two spherical
harmonics.

The time modulation of the transient ZFS is caused

by distortions of the complex that originate from vi-

brations and collisions with solvent molecules. In the
same manner as the static ZFS Hamiltonian, the tran-

sient ZFS tensor is defined in its own principal frame,

PT. In this paper, we assume that the pseudorotational
model [12,16,17,36] describes the time modulations of

the transient ZFS (the
^̂LL̂LLD term in the lattice Liouvillian

of Eq. (4)) in the L frame. According to this model, the

principal direction of the transient ZFS changes with

time, following the rotational diffusion equation. The
assumption leads to the following form of the transient

ZFS Hamiltonian in the L frame

HTðLÞ
ZFS ðtÞ ¼

X
n¼0;�1;�2

ð�1ÞnV ðLÞ
n ðtÞS2�n; ð11Þ

where

V ðLÞ
n ðtÞ ¼ 2

3

� �1=2
DTD20;n XPTLðtÞð Þ

"

þ ET D22;n XPTLðtÞð Þ
�

þ D2�2;n XPTLðtÞð Þ
�#

: ð12Þ

In full analogy to the above description of the static ZFS

Hamiltonian, the relaxation effect of the transient ZFS is

described by its magnitude, D2T ¼ ð2=3ÞD2T þ 2E2T, where
the DT and ET terms correspond to the axial and

rhombic part of the transient ZFS tensor, respectively,

and a distortional correlation time, sD, for second-rank
spherical harmonics. We assume that the transient ZFS
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is independent of rotation and that the angles XPTLðtÞ
and XPSLðtÞ are statistically uncorrelated.
The PRE of nuclei residing in the first coordination

shell is caused by the dipolar interaction (we neglect here

the scalar part of the hyperfine interaction) between the

nuclear and electron spins, modulated by the electron

spin relaxation and the rotational diffusion of the com-

plex, cf. Eq. (3). If the reorientation is rapid, it is also an

origin of the electron spin relaxation, as mentioned
above. It means that, for a rapidly rotating system, the

decomposition of the correlation function into a part

describing the electron spin system and a part corre-

sponding to the spatial variables requires a detailed

analysis. We assume s2RD2S � 1, i.e., that the contribu-

tion to the electron relaxation caused by rotational

modulation of the static ZFS can be treated by the

Redfield theory. According to second-order perturba-
tion theory, the time evolution of the electron spin

density operator, q0
SðtÞ, is described by the equation

djq0
SðtÞi
dt

¼ �
Z t

0

^̂LL̂LL
0
1ðtÞ

^̂LL̂LL
0
1ðt � sÞjq0

SðtÞids; ð13Þ

where the prime indicates that all the operators are

considered in the interaction representation, i.e.,

jq0
SðtÞi ¼ expði

^̂LL̂LL0tÞjqSðtÞi;
^̂LL̂LL
0
1ðtÞ ¼ expði

^̂LL̂LL0tÞ^̂LL̂LL
0
1ðtÞ expð�i

^̂LL̂LL0tÞ;

and
^̂LL̂LL1ðtÞ is a time-dependent Liouvillian. We must

notice that the static ZFS coupling, expressed in the

laboratory (L) frame, is a part of the time-dependent

Liouville operator due to its modulation by the rota-

tional diffusion. In general, after integration in the
right-hand side of Eq. (13), one gets a quantity de-

pendent on the upper integration limit, t, through the

time dependence of spatial variables. If the static ZFS

coupling is the perturbing Liouvillian, the dependence

on the t parameter is manifested by the XPSLðtÞ value.
Assuming the PS and M frames to coincide, we note

that the same function XPSLðtÞ is present explicitly,
modulating the dipole–dipole interactions, in the cor-
relation function given by Eq. (3). For that reason, the

correlation function KDD1;1 ð�xIÞ should be written in the
form

KDD1;1 ð�xIÞ ¼ 30 CDD
	 
2 X

q2ð�1;0;1Þ

�
X

p2ð�1;0;1Þ

2 1 1

1� q q �1

� �
2 1 1

1� p p �1

� �

�
Z 1

0

TrR D2
	

0;1�q XMLðtÞ½ �
n

� TrS S1ðLÞ
þ

q exp
��h
� ið^̂LL̂LLSþ ^̂LL̂LLDÞt

�
S1ðLÞp

�i
�D2 XMLð0Þ½ �qeq

o
exp ð� ixI tÞdt: ð14Þ
0;1�p L
Thus, in the first step, the average with respect to spin
variables (TrSÞ should be computed, giving a function
depending on XMLðtÞ; in the next step, one can average
the total expression with respect to spatial variables

(TrR).
In the derivation of the Redfield theory it is assumed

that t is such a long time that the integrand in Eq. (13) will

have decayed to zero for times much shorter than t, and

that no error will be introduced by extending the limit of
integration to infinity. This assumption makes the right-

hand side of Eq. (13) independent of t, which leads to the

common definition of a Redfield relaxation superopera-

tor [8,37]. As stated above, the electron spin system sat-

isfies the Redfield condition; in other words, the

rotational diffusion is so fast that the electron spin can see

only average, time-independent effects of the molecular

reorientation. This fact permits us to factorise the corre-
lation function KDD1;1 ð�xIÞ into a product of the correla-
tion function for the rotationally modulatedXMLðtÞ angle
and the correlation function for the electron spins

KDD1;1 ð�xIÞ ¼ 30ðCDDÞ2
X

q2ð�1;0;1Þ

�
X

p2ð�1;0;1Þ

2 1 1

1� q q �1

� �
2 1 1

1� p p �1

� �

�
Z 1

0

hD2	0;1�q XPSLðtÞ
� �

D20;1�p XPSLð0Þ
� �

i

� TrS S1ðLÞ
þ

q exp
�n
� ið^̂LL̂LLSþ ^̂RR̂RRÞt

�
S1ðLÞp qeqL

o
� exp ð� ixI tÞdt ð15Þ

with the electron spin relaxation superoperator ^̂RR̂RR ¼ ^̂RR̂RR
S

ZFS

þ ^̂RR̂RR
T

ZFS. The correlation function for the molecular re-

orientational motion takes the simple form

hD2	mk XPSLðtÞ
� �

D2mk XPSLð0Þ
� �

i ¼ 1
5
exp

�
� t

sR

�
ð16Þ

where sR is the rotational correlation time for rank-two
spherical harmonics.

The remaining problem now is the electron spin dy-

namics part of the correlation function or, indeed, the

issue of electron spin relaxation. The time development

of the matrix element rSaa0 of the electron density oper-

ator is described by the Redfield theory and is given by

the equation

drSaa0 ðtÞ
dt

¼ �ixaa0r
S
aa0 ðtÞ þ

X
bb0

Raa0bb0 rSbb0

�
� r0bb0

�
: ð17Þ

Application of the secular approximation restricts the

summation to include only those terms where

xaa0 � xbb0 � Raa0bb0 . The relaxation matrix elements

Raa0bb0 are linear combinations of spectral densities. The

resulting electron spin relaxation rates of the Redfield

theory are expressed in terms of spectral densities

JSZFSðxÞ and JTZFSðxÞ of the static and transient ZFS,
respectively:
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JSZFSðxÞ ¼ 1
5
D2S

sR
1þ x2s2R

; ð18Þ

JTZFSðxÞ ¼ 1
5
D2D

sD
1þ x2s2D

: ð19Þ

The Redfield description of the electron spin relaxation

in terms of spectral densities is valid as long as the

conditions s2RD2S � 1 and s2DD2T � 1 are fulfilled. These
results are identical to the conclusions of Rast et al.

[28].

To obtain the final expression for the inner-sphere

nuclear spin relaxation rates in the Zeeman limit, we

proceed in analogy with our earlier work [26–28,34]. It

should be emphasised that this step has not been ta-

ken by Rast et al. [28]; Borel et al. [29] performed this

step in a simplified, SBM-like manner. Here, we define
the superoperator ^̂MM̂MM

Zeeman

DD for the inner-sphere relax-

ation

^̂MM̂MM
Zeeman

DD ¼ �i^̂LL̂LLZeeman þ ^̂RR̂RR
T

ZFS þ
^̂RR̂RR
S

ZFS þ ixI

�
þ 1

sR

�
^̂
11̂11:

ð20Þ

The matrix elements of the superoperator
^̂MM̂MM
Zeeman

DD are

provided in Appendix A for S ¼ 3=2 and in the Sup-
plementary Material for the other electron spin quan-

tum numbers (expressions for the most interesting

S ¼ 7=2 case are both numerous and lengthy). Using the
^̂MM̂MM
Zeeman

DD superoperator, the inner-sphere spectral density

KDD1;1 ð�xIÞ can be written in the Zeeman limit as

KDD1;1 ð�xIÞ¼
1

5
ðCDDÞ2 1

2Sþ1

�
X

m2ð�1;0;1Þ

Z 1

0

TrS S1ðPÞ
þ

m exp
�n
� ^̂MM̂MM

Zeeman

DD s
�
S1ðPÞm

o
ds:

ð21Þ
Thus, we can formulate the compact expression for the

nuclear spin–lattice relaxation rate of the inner-sphere

nuclei, which is the high-field counterpart of Eq. (13) of

Nilsson and Kowalewski [25]

T Zeeman1;DD

� ��1
ðxIÞ ¼ ðCDDÞ2

� 2SðS þ 1Þ
15

Re sDD;ðZeemanÞ
�1;�1

n
þ sDD;ðZeemanÞ

0;0 þ sDD;ðZeemanÞ
1;1

o
: ð22Þ

The electron spectral densities, sDD;ðZeemanÞ
m;m , of the inner-

sphere relaxation in the Zeeman limit for rapidly ro-

tating systems have the form

sDD;ðZeemanÞ
m;m ¼ 3

SðS þ 1Þð2S þ 1Þ c
	
m

^̂MM̂MM
Zeeman

DD

� ��1
cm ð23Þ

where cm is a projection vector for the electron spin
tensor operator S1m [18,25–27,34], appropriate for the
high-field limit.
2.3. The high-field limit, outer-sphere relaxation

In this case, we begin with Eq. (7) rather than Eq. (3).

For the outer-sphere PRE, the lattice dynamics is gov-

erned by translational diffusion and electron spin dy-

namics. The electron spin dynamics is the result of the

modulation of the static and transient ZFS by the ro-

tational and distortional motions, respectively. Follow-

ing our earlier work [34], we consider the translational
motion as statistically uncorrelated with the electron

spin dynamics and assume that the solvent molecules

move independently of the complex. Thus, the transla-

tional motion is also uncorrelated with the reorienta-

tional motion. Under these assumptions, the correlation

function for the outer-sphere PRE, Eq. (7), can be sep-

arated into one function involving only the electron spin

part and another including the correlation function for
the translation diffusion

KOS1;1 ð�xIÞ ¼ 30ðCOSÞ2
X

q2ð�1;0;1Þ

X
p2ð�1;0;1Þ

�
2 1 1

1� q q �1

� �
2 1 1

1� p p �1

� �

�
Z 1

0

D2
	
0;1�q½XISðsÞ�
r3ISðtÞ

D20;1�p½XISð0Þ�
r3ISð0Þ

* +

� TrS S1ðLÞ
þ

q exp
�n
� ið^̂LL̂LLS þ ^̂RR̂RRÞs

�
S1ðLÞp qeqL

o
� expð�ixIsÞ ds: ð24Þ

Eq. (24) is the outer-sphere counterpart of Eq. (1). A

detailed description of the correlation function for

translation diffusion, including the possibility of inter-

molecular interactions between the paramagnetic species

and the solvent, described in terms of the potential of

mean force or the radial distribution functions, gðrÞ, is
presented in our earlier papers [34,35]. The only differ-
ence compared to these works is that the relaxation

superoperator, ^̂RR̂RR, contains a distortional as well as a
rotational component.
2.4. The low-field limit

In the low-field regime, the static ZFS (if present) is

the main Hamiltonian and the electron spin is quantised
in the molecule-fixed static ZFS principal frame, PS (the
case of systems with vanishing static ZFS requires spe-

cial treatment and will be the subject of a forthcoming

paper). The Zeeman interaction is neglected. Indepen-

dently of the rate of the reorientational motion of the

complex, the electron spin relaxation is caused by dis-

tortional motion, modelled as pseudorotation. As far as

the electron spin relaxation is concerned, the situation
thus becomes identical to that described by Nilsson and

Kowalewski [25]. The inner-sphere PRE also follows the

results of that study. The corresponding case of the
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outer-sphere PRE in the low-field limit has been treated
by Kruk et al. [34] in the case of force-free diffusion. A

generalisation to the diffuse second-sphere situation is

straightforward [35].

For slowly rotating systems, we can also deal with the

intermediate regime, when the Zeeman interaction is

non-negligible and a static ZFS is present [26,27]. If the

rotation is fast, we get into difficulties, however, because

the two interactions that should be included in the main
Hamiltonian have a stochastic time dependence with

respect to each other. For this reason, one cannot now

establish a simple physical picture of the electron spin

subsystem in a similar manner as in the Zeeman and

ZFS limits, by decomposing the electron spin Hamilto-

nian into a main and a perturbing part.
Fig. 1. Calculated inner-sphere NMRD profiles for the electron spin

quantum number S ¼ 1 in the low-field regime (solid line with empty
circles) and in the high-field regime (solid line with solid circles). All the

parameters are given in the text. The prediction of the slow-motion

theory is shown as a solid line.
3. Results and discussion

This section is divided into two parts. In the first part,

we discuss the inner-sphere and outer-sphere contribu-

tions to the PRE effect in the low-field as well as in the

high-field regimes. We compare the calculations of the

inner-sphere PRE based on the present theory with pre-

dictions of the general slow-motion theory. The validity
of the present theory is determined in the low-field limit

by the condition: HS
ZFS  HT

ZFS, while the validity con-

dition in the high-field limit is: HZeeman  HT
ZFS þ HS

ZFS.

All the data are presented as the PRE of aqueous protons

(110M) in the presence of 1mM paramagnetic species.

The PRE under these conditions is also referred to as

‘‘relaxivity.’’ The number of solvent molecules entering

the first coordination sphere of the metal is assumed to be
unity for the inner-sphere case and zero for the outer-

sphere. All the calculated NMRD profiles presented in

this section make use of a certain set of fixed parameters.

Both the static and the transient ZFS are assumed to be

axially symmetric, ES ¼ ET ¼ 0. Under these conditions,
the ZFS amplitudes are simply related to the axial

ZFS parameter, DQ ¼
ffiffiffiffiffiffiffiffi
2=3

p
DQ, where Q ¼ S or T. The

principal axes of the static ZFS and the dipole–dipole
interaction are assumed to coincide. For the inner-sphere

case, the proton–electron spin distance is set to rIS ¼ 300
pm, while the outer-sphere contributions are obtained

for the distance of closest approach d ¼ 400 pm and

the diffusion coefficient D12 ¼ 7� 10�10 m2/s. The am-
plitude of the transient ZFS, DT, and the distortional
correlation time, sD, are: DT ¼ 0:01cm�1 and sD ¼ 4 ps.
The corresponding parameters related to the static
ZFS are DS ¼ 0:04cm�1, sR ¼ 30 ps. The magnetogyric
ratio of the proton is used for the nuclear spin, while cS
for the electrons is set to 1:7588� 1011 T�1 s�1, corre-
sponding to ge ¼ 2:0023. In the second part, we employ
the new theoretical tools to interpret experimental

NMRD profiles for some gadolinium(III)-containing

systems.
3.1. The inner-sphere and outer-sphere PRE

In Fig. 1, we present the NMRD profiles of protons

residing in the first coordination sphere, in the low-field

as well as in the high-field regimes for the spin quantum

number S ¼ 1. The product of the rotational correlation
time and the static ZFS (in angular frequency units) is

0.4, a value chosen because it can be considered repre-

sentative for experimentally relevant situations in sys-
tems with higher S quantum numbers. It is reasonably

consistent with the assumed validity of the perturbation

of Redfield regime. The NMRD profiles in the low- and

high-field limits based on the present theory are ex-

tended outside the range of their validity in order to

show their behaviour in the intermediate regime. We

compare the obtained curves with the prediction of the

general slow-motion theory. One can conclude that, for
spin S ¼ 1, the whole NMRD profile obtained by ex-

tension of the approaches valid in the low- and high-

field limits is close to the general-theory predictions. For

this particular spin quantum number, the results of the

Solomon–Bloembergen–Morgan approach (SBM), with

the transient ZFS as the only relaxation mechanism for

the electron spin, also coincide (not shown) with the

general theory.
The situation becomes more complicated for higher

electron spin quantum numbers. The results for S ¼ 5=2
are shown in Fig. 2. This figure shows that extending the

present theory outside the range of its validity does not

reproduce proper values of PRE in the intermediate

regime. The SBM approach, without the static ZFS

contribution to the electron relaxation, works well at

high field but breaks down at low field, as expected. The



Fig. 2. Calculated inner-sphere NMRD profiles for the electron spin

quantum number S ¼ 5=2 in the low-field regime (solid line with empty
circles) and in the high-field regime (solid line with solid circles). All the

parameters are given in the text. The prediction of the slow-motion

theory is shown as the solid line. The SBM results are shown as a

dashed line.

Fig. 4. Calculated outer-sphere NMRD profiles for the electron spin

quantum number S ¼ 5=2 in the low-field regime (solid line with empty
circles) and in the high-field regime (solid line with solid circles): the

present theory and the Bayburt–Sharp approach (- � � � - � � � -).
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data in Fig. 2 are representative for the inner-sphere

NMRD profiles for S > 1 in general.
The outer-sphere NMRD profiles shown in Fig. 3

correspond to the inner-sphere PRE presented in the

Fig. 1 (S ¼ 1Þ. A general description (corresponding to
the slow-motion theory) of the outer-sphere PRE is not
available. For this reason, we compare the predictions of

the present theory with the calculations based on the

Hwang and Freed theory [10] and the ZFS limit theory

of Bayburt and Sharp [33]. Clearly, with the particular

parameter set chosen here, the electron spin relaxation
Fig. 3. Calculated outer-sphere NMRD profiles for the electron spin

quantum number S ¼ 1 in the low-field regime (solid line with empty
circles) and in the high-field regime (solid line with solid circles).

Comparison of the present approach with the Bayburt–Sharp theory

(- � � � - � � � -) and the Hwang–Freed theory (dashed-dotted line).
effects are important at low field and the Hwang and
Freed theory deviates from the present calculations. The

present low-field theory corresponds to Bayburt and

Sharp�s results, as reported earlier [34]. The outer-sphere
PRE calculations for the electron spin quantum number

S ¼ 5=2 are presented in Fig. 4. The chosen set of pa-
rameters is the same as in Fig. 3. The reason for the

discrepancy of about 10% between the Bayburt and

Sharp theory and our predictions in the low-field case
for the electron spins S > 1 is the simple description of
the electron relaxation (correct only for S ¼ 1Þ used by
Bayburt and Sharp. For higher values of the static ZFS,

the discrepancies between the present approach and that

of Bayburt and Sharp become even more pronounced

(not shown).

3.2. Comparison with experimental data

The main purpose of the present work is to provide

improved tools for analysis and interpretation of

NMRD profiles for solvent protons in solutions of

transition metal ions and their rapidly rotating com-

plexes. A major problem in the NMRD profile analysis

in general, shared by the present approach, is that the

number of parameters to be varied is large. An advan-
tage is obtained, however, if the NMRD profiles are

collected for a rapidly rotating system as well as for an

analogous slowly rotating system, obtained by binding

the low-molecular weight complex to a protein. PRE

data for the complex bound to a protein can be analysed

using the theory presented in the earlier contribution

from our laboratory [27]. Because of the assumption of

slow rotation, the rotational correlation time does not
enter this approach and the number of parameters is

therefore reduced. It is reasonable to expect that the
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parameters, other than the rotational correlation time,
obtained for a slowly rotating system should not change

much for the case of fast rotation. For the purpose of

illustrating the use of our approach, we have chosen two

pairs of Gd(III) systems in aqueous solution: the com-

plex Gd–DTPA–SA (DTPA, diethylenetriaminepenta-

acetic acid; SA, sulfonamide), in the absence and in the

presence of carbonic anhydrase (CA), and the Gd–

EDTA� (EDTA, ethylenediaminetetraacetic acid) com-
plex, bound to the protein bovine serum albumin (BSA)

and in the absence of the protein. The Gd–DTPA–SA

experimental datasets have been published by Anelli

et al. [38] and the authors provided us with the data in

numerical form. We chose the following strategy to

obtain a reasonable least-squares fit to this set of ex-

perimental NMRD profiles. In the first step, we analy-

sed the experimental data for the slowly rotating,
protein-containing system, using the theory described

previously [27]. With this approach we concentrated our

interest on four parameters. Three of them control the

electron spin relaxation: the amplitudes of the transient

and static components of the ZFS splitting (DT and DS)
and the correlation time sD describing the time fluc-

tuations of the transient ZFS. The inner-sphere con-

tribution scales with the sixth power of the electron
spin–nuclear spin distance, rIS . This distance is our
fourth parameter to be adjusted. The relative diffusion

coefficient, D12, the distance of closest approach, d, and
the exchange lifetime, sM, were held fixed throughout
the calculations at the values used by Anelli et al. [38],

d ¼ 360 pm and sM ¼ 560 ns, assuming that there is one
water molecule in the first coordination sphere of the

metal ion, i.e., q ¼ 1. The exchange lifetime does not
enter the theory for the relaxation rate of a nucleus in a

paramagnetic complex (T�1
1I above), but does influence

in an important way the relation between the T�1
1I and

the measured PRE, according to Eq. (1). The four-pa-

rameter (DT; sD;DS; rIS) fit was performed for the (Gd–
DTPA–SA)–CA complex and the results are listed in

Table 1. An analogous fit neglecting the rather small

outer-sphere contribution was also performed (second
line in Table 1). The experimental NMRD profiles and

the least-squares fits according to the first line in Table 1

are also presented in Fig. 5. Among parameters collected

in Table 1, the proton–metal distance, rIS , deserves a
comment. The value obtained in the present model (with

or without the outer-sphere contribution) is rather short,

compared to 300–310 pm reported by Anelli et al. [38]. A

probable explanation is that the fitted distance is cor-
related with the exchange lifetime and other rIS ; sM pairs
produce a fit of very similar quality. For example, a fit

with sM ¼ 604 ns (not shown) yields the rIS ¼ 296 pm.
Thus, to get a reliable estimate of rIS , one would need an
independent and trustworthy measurement of sM.
To obtain the fit for the rapidly rotating system (in

the absence of carbonic anhydrase), only the rotational



Fig. 6. Experimental and calculated NMRD profiles for Gd–EDTA�

in aqueous solution in the presence (solid circles) and absence (solid

squares) of the bovine serum albumin. The least-squares fits of the

present theory (solid lines) and the prediction of the slow-motion

theory (dashed line) in the intermediate regime for the rapidly rotating

system. The parameters used to obtain the dashed line and the solid

lines are given in Table 2.

Fig. 5. Experimental and calculated (solid line) NMRD profiles for

Gd–DTPA–SA in aqueous solution in the presence (solid squares) and

absence (solid circles) of the carbonic anhydrase. The parameters used

to obtain the solid lines are given in Table 1. The fit using the SBM

theory for the (Gd–DTPA–SA)–CA system is shown as a dashed line.
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correlation time sR was re-optimised. The fitting was
performed simultaneously in the low- and high-field

regions, neglecting experimental points in the interme-

diate regime. The results are shown in Table 1 and in
Fig. 5. We note that the reoptimized rotational corre-

lation time seems a little too short for the complex of

this size.

For the sake comparison, we have also performed a

three-parameter fit (DT; sD; rIS ;DS ¼ 0; sR ¼ 12 ns as

estimated by Anelli et al. [38]) of the data for the (Gd–

DTPA–SA)–CA complex using the Solomon–Bloem-

bergen–Morgan approach [1,4–7] and including only the
inner-sphere contribution. The results are also shown in

Table 1 and Fig. 5. The low-field shape of the SBM

profile is in disagreement with the experimental data,

which conforms to our earlier experience [27,39] and is

the result of neglecting the effect of the static ZFS. The

SBM analysis of the data for the (Gd–DTPA–SA)

complex can be found in the paper by Anelli et al. [38].

The second set of experimental data, i.e., the NMRD
profiles for Gd–EDTA� and (Gd–EDTA)–BSA has

been presented in a review by Koenig and Brown [40].

The analysis was performed in a similar manner as de-

scribed above for the Gd–DTPA–SA complex. The

differences were as follows: the inner-sphere contribu-
Table 2

Parameters obtained by least-squares fits of the inner-sphere relaxation theor

presence and absence of bovine serum albumin (BSA)

DT 10�2 cm�1 sD ps DS 10�2 cm�

(Gd–EDTA)–BSA 1.9 15 2.6

Gd–EDTA� 1.9a 15a 2.6a

a The value kept constant in the fitting procedure.
tion to the PRE was assumed to be dominant (the outer-

sphere part was neglected) and the five parameters

DT; sD;DS; rIS , and sM were all adjusted (assuming q ¼ 3
[40]). The fit in the fast-rotation case was made by
holding the four parameters, DT; sD;DS; rIS , constant at
the values obtained for the protein complex and ad-

justing only the correlation time sR and the exchange
lifetime sM. The small difference between the obtained
exchange lifetimes in the slowly and rapidly rotating

systems gives a certain improvement of the fit. The re-

sulting parameters are reported in Table 2 and the best

fits are presented in Fig. 6, together with the prediction
of the general theory calculated for the same set of pa-

rameters in the absence of the protein. All the resulting

parameters, DT; sD and DS; sR, satisfy the validity con-
dition of the Redfield limit (DSsR ffi 0:3–0.4 for both
complexes). We have also fitted the (Gd–EDTA)–BSA

dataset assuming only two water molecules in the first

coordination sphere (q ¼ 2, not shown). The resulting
standard deviation is somewhat smaller than for q ¼ 3.
The IS distance is shorter for q ¼ 2 and so is the ex-
change lifetime; the other parameters are very similar to

those shown in Table 2.
y to the experimental data for Gd–EDTA� in aqueous solution in the

1 rIS pm sR ps sMns q SD

305 — 491 3a 4.3%

305a 65 460 3a 4.7%
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4. Concluding remarks

The effects of fast rotation of paramagnetic com-

plexes on the inner- and outer-sphere paramagnetic re-

laxation enhancement have been investigated

theoretically. Expressions for the PRE have been de-

rived in the high-field limit and at very low magnetic

field. The new theoretical model for the inner-sphere

relaxation has been compared with the general slow-
motion theory and has been found to perform well

within the validity range of the Redfield theory for

electron spin relaxation. The model has also been ap-

plied to the analysis of the experimental nuclear mag-

netic relaxation dispersion profiles of two low-molecular

weight Gd(III) complexes for which data were also

available in slowly rotating, protein-bound form. Rea-

sonably good fits were possible to obtain by adjusting
only one or two parameters for the small complexes. We

hope that the theory presented here will be found useful

in the work on new, efficient contrast agents for MRI as

well as in other studies of paramagnetic complexes in

solution.
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Appendix A

We provide here the non-zero matrix elements of the
superoperator ^̂MM̂MM

Zeeman

DD of Eq. (20) for S ¼ 3=2. The su-
permatrix elements refer to the electron spin eigenstates,

labelled as follows:

j1i ¼ jS; Si; . . . j2S þ 1i ¼ jS;�Si: ðA:1Þ

The elements related to the longitudinal electron spin

relaxation are given by

M1;1;1;1 ¼ M2;2;2;2 ¼ M3;3;3;3 ¼ M4;4;4;4

¼ ixI þ
1

sR
þ 6JTðxSÞ þ 6JTð2xSÞ

þ 6JSðxSÞ þ 6JSð2xSÞ; ðA:2Þ

M1;1;2;2 ¼ M2;2;1;1 ¼ M3;3;4;4 ¼ M4;4;3;3

¼ �6JTðxSÞ � 6JSðxSÞ; ðA:3Þ

M1;1;3;3 ¼ M3;3;1;1 ¼ M2;2;4;4 ¼ M4;4;2;2

¼ �6JTð2xSÞ � 6JSð2xSÞ: ðA:4Þ
The elements related to the transverse electron spin
relaxation are given by

M1;2;1;2 ¼ M3;4;3;4

¼ iðxI � xSÞ þ
1

sR
þ 6JTð0Þ þ 6JTðxSÞ

þ 6JTð2xSÞ þ 6JSð0Þ þ 6JSðxSÞ
þ 6JSð2xSÞ; ðA:5Þ

M1;3;1;3 ¼ iðxI � 2xSÞ þ
1

sR
þ 6JTð0Þ þ 6JTðxSÞ

þ 6JTð2xSÞ þ 6JSð0Þ þ 6JSðxSÞ
þ 6JSð2xSÞ; ðA:6Þ

M1;4;1;4 ¼ iðxI � 3xSÞ þ
1

sR
þ 6JTðxSÞ

þ 6JTð2xSÞ þ 6JSðxSÞ þ 6JSð2xSÞ; ðA:7Þ

M2;3;2;3 ¼ iðxI � xSÞ þ
1

sR
þ 6JTðxSÞ þ 6JTð2xSÞ

þ 6JSðxSÞ þ 6JSð2xSÞ; ðA:8Þ

M2;4;2;4 ¼ iðxI � 2xSÞ þ
1

sR
þ 6JTðxSÞ

þ 6JTð2xSÞ þ 6JSðxSÞ þ 6JSð2xSÞ; ðA:9Þ

M1;2;3;4 ¼ M3;4;1;2 ¼ M2;1;4;3 ¼ M4;3;2;1

¼ �6JTð2xSÞ � 6JSð2xSÞ; ðA:10Þ

M1;3;2;4 ¼ M2;4;1;3 ¼ M3;1;4;2 ¼ M4;2;3;1

¼ 6JTðxSÞ þ 6JSðxSÞ: ðA:11Þ

The elements Mb;a;b;a can be obtained from the elements

Ma;b;a;b by replacing the electron Larmor frequency xS

with �xS. The corresponding matrix elements for the

outer-sphere case can be obtained as described in [34].

The expressions for other values of the S quantum

number will be provided by the authors upon request.
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